CBT CLASS XII MATHS SEPTEMBER-2024

GENERAL INSTRUCTION :

CHAPTER: INTEGRATION AND APPLICATION OF INTEGRATION

Sr.No	Ouestion	Marks
	Case Study 1	
	Antiderivatives: The Antiderivative of a function is the inverse of the	
	Antiderivatives. The Antiderivative of a function is the inverse of the	
	derivative of the function. Antiderivative is also called the Integral of a	
	function. Suppose the derivative of a function i.e. $d/dx[f(x)+c]$ is $F(x)$	
	then the antiderivative of $[F(x)]$ or $\int F(x) = f(x) + c$.	
	On the basis of above information answer the following Questions	
1	Antiderivative of sin2v is	1
	Antiderivative of sinizx is $\left(a\right) \left(\cos^2 x\right) / 2 + a$	
	$(a) (-\cos 2x)/2 + c$	
	$(0) (\cos 2x)/2 + c$	
	$(d) (-2\cos 2x)/2 + c$	
2	Antiderivative of $1/x + 4x + \sin x$ is	1
	(a) $\log x + 2x^2 + \cos x + c$	
	(b) $\log x + 4x^2 - \cos x + c$	
	(c) $\log x + 2x^2 - \cos x + c$	
	(d) $\log x - 2x^2 - \cos x + c$	
3	Antiderivative of $(3x+4)^2$ is	1
	(a) $(3x + 4)^3/3 + c$	
	(b) $(3x + 4)^3 / 6 + c$	
	$(c) (3x + 4)^3/9 + c$	
	$(d) - (3x + 4)^3/3 + c$	
4	If $f'(x) = 4x^3 - 3/x^4$ and $f(2) = 0$, value of $f(x)$.	1
	(a) $x^4 + 1/x^3 + 129/8$	
	(b) $x^4 + 1/x^3 - 129/8$	
	$(c) x^{2} - \frac{1}{x^{3}} - \frac{129}{8}$	
	$\left[\frac{(d)}{x^{3}} + \frac{1}{x^{3}} - \frac{129}{8} \right]$	
	Case Study 2	
	We know that in integration by parts $\int f \cdot g dx = f \int g dx - \int \left(\frac{d}{dx} f \times \int g dx \right) dx + C$	
	Here f is first function and g be the second function and First function decide on the	
	Basis of ILATE i.e. I for Inverse Trigonometric function L tends Logarithmic function,	
	A tends Algebraic function, T for trigonometric function, and E for Exponential	
	function.	
	On the basis of above information give the answer of following questions	
5	Integration of $e^{x}(\sin x + \cos x)$ is	1
	(a) $e^x \sin x + c$	
	(b) - $e^x \sin x + c$	
	(c) $e^x \cos x + c$	
	$(d) -e^x \cos x + c$	
6	Integration of log x is	1
	(a) $x \log x + x + c$ (b) $\log x + x + c$	
	$(c) \log x + x + c$	
	$ \begin{array}{c} (c) & \log x - x + c \\ (d) & x \log x - x + c \end{array} $	
7	Integration of tan ⁻¹ x is	1
	(a) $x \tan^{-1}x + c$	
	(b) $x \tan^{-1}x - (x^2 + 1)/2 + c$	
	(c) $x \tan^{-1}x - \log(x^2 + 1)/2 + c$	
0	$\frac{ (u) \times tall \times + \log x^- + 1 /2 + c}{1 + \log (x^- + 1)/2 + c}$	1
0	(a) $x^3e^x + 3x^2e^x + 6xe^x + 6e^x + 6e^x$	
	(b) $x^3e^x - 3x^2e^x + 6xe^x - 6e^x + c$	
	(c) $x^3e^x - 3x^2e^x - 6xe^x + 6e^x + c$	
	(d) $x^3e^x - 3x^2e^x - 6xe^x - 6e^x + c$	

	 Directions: (Q.9 - Q.10) Each of these questions contains two statements: Assertion (A) and Reason (R). Each of these questions also has four alternative choices, any one of which is the correct answer. You have to select one of the options (a), (b), (c) and (d) given below: (a) A is true, R is true and R is a correct explanation for A (b) A is true, R is true and R is not a correct explanation for Assertion (c) A is true and R is false (d) A is false and R is true 	
9	Assertion: $\int_{-a}^{a} x^{5} dx = 0$ Reason: $\int_{-a}^{a} f(x) dx = 0 \text{ if } f(-x) = -f(x) \text{ i. e. } f(x) \text{ is odd function}$	1
10	Assertion: Area of circle is πr^2 Reason: Area bounded by the circle $x^2 + y^2 = r^2$ in first quadrant is $\pi r^2/4$	1

Answer Key

Ans1	
<u>Feedback</u>	Option (a) is correct, Antiderivative of $\sin 2x$ is $(-\cos 2x)/2 + c$
Ans2	(c)
<u>Feedback</u>	<i>Option (c) is correct, Antiderivative of</i> $1/x + 4x + \sin x$ <i>is logx</i> $+ 2x^2 - \cos x + c$
Ans3	(c)
<u>Feedback</u>	<i>Option (c) is correct, Antiderivative of $(3x+4)^2$ is $(3x+4)^3/9 + c$</i>
Ans4	(b)
<u>Feedback</u>	Option (b) is correct, Since by integrating $f'(x) = 4x^3 - 3/x^4$ we get is $f(x) = x^4 + 1/x^3 + c$, and when we put $x = 2$ in $f(x)$ so, $c = -129/8$
Ans5	(a)
<u>Feedback</u>	Option (a) is correct, $\int e^x(\sin x + \cos x) dx$ is $e^x \sin x + c$, This can also find with $\int e^x [f(x) + f(x)] dx = e^x f(x) + c$
Ansh	(d)
Allso	
Feedback	<i>Option (d) is correct,</i> Integration of $\log x$ is $x \log x - x + c$ by using by parts of integration
Feedback Ans7	Option (d) is correct, Integration of log x is x log x – x + c by using by parts of integration (c)
<u>Feedback</u> <u>Ans7</u> <u>Feedback</u>	Option (d) is correct, Integration of log x is x log x – x + c by using by parts of integration (c) Option (c) is correct, Integration of tan ⁻¹ x is x tan ⁻¹ x – log (x ² +1)/2 +c by using by parts of integration
Anso Feedback Ans7 Feedback Ans8	 Option (d) is correct, Integration of log x is x log x - x + c by using by parts of integration (c) Option (c) is correct, Integration of tan⁻¹x is x tan⁻¹x - log (x² +1)/2 + c by using by parts of integration (b)
Anso Feedback Ans7 Feedback Ans8 Feedback	 Option (d) is correct, Integration of log x is x log x - x + c by using by parts of integration (c) Option (c) is correct, Integration of tan⁻¹x is x tan⁻¹x - log (x² +1)/2 + c by using by parts of integration (b) Option (b) is correct, Integration of x³e^x is x³e^x - 3x²e^x + 6xe^x - 6 e^x + c by using by parts of
Anso Feedback Ans7 Feedback Ans8 Feedback Ans9	 Option (d) is correct, Integration of log x is x log x - x + c by using by parts of integration (c) Option (c) is correct, Integration of tan⁻¹x is x tan⁻¹x - log (x² +1)/2 + c by using by parts of integration (b) Option (b) is correct, Integration of x³e^x is x³e^x - 3x²e^x + 6xe^x - 6 e^x + c by using by parts of (a)
Anso Feedback Ans7 Feedback Ans8 Feedback Ans9 Feedback	 Option (d) is correct, Integration of log x is x log x - x + c by using by parts of integration (c) Option (c) is correct, Integration of tan⁻¹x is x tan⁻¹x - log (x² +1)/2 + c by using by parts of integration (b) Option (b) is correct, Integration of x³e^x is x³e^x - 3x²e^x + 6xe^x - 6 e^x + c by using by parts of (a) Option (a) is correct, A is true, R is true and R is a correct explanation for A
AnsoFeedbackAns7FeedbackAns8FeedbackAns9FeedbackAns10	 Option (d) is correct, Integration of log x is x log x - x + c by using by parts of integration (c) Option (c) is correct, Integration of tan⁻¹x is x tan⁻¹x - log (x² +1)/2 + c by using by parts of integration (b) Option (b) is correct, Integration of x³e^x is x³e^x - 3x²e^x + 6xe^x - 6 e^x + c by using by parts of (a) Option (a) is correct, A is true, R is true and R is a correct explanation for A (b)